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This paper develops particle-resolved simulations to predict conductivity within porous composite
electrodes. Hundreds of spherical particles (order fractions of a micron) are packed randomly into a
cubical region (order of a few microns), using two alternative packing algorithms. The composite struc-
tures include both ion-conducting and electron-conducting particles. The particle network is discretized
using tetrahedral meshes that fully resolve the interiors of the particles and their intersections. Charge-
conservation equations are solved to predict current through the network. These simulations are used
to derive the effective conductivities that are required for macroscale simulations at length scales much
larger than the particle scale. Because the microstructures are synthesized via random particle packing,
multiple realizations are needed to deliver statistically invariant results. The results show that a few
hundred particles with a few hundred realizations is sufficient. Predicted coordination numbers, perco-
lation probabilities, and three-phase-boundary lengths are consistent with percolation theory, but the
predicted effective conductivities are significantly smaller than those predicted with conventional per-
colation theory. By adjusting the Bruggeman factor from the conventional value of 1.5-3.5 brings the
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percolation-theory prediction for effective conductivity in line with the fully resolved results.
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1. Introduction

The objective of this paper is to develop microstructural models
of composite electrodes that assist in predicting effective properties
that can be used in larger scale continuum models. An anode-
supported tubular SOFC, such as illustrated in Fig. 1, might be on
the order of 100 mm long and 10 mm in diameter. A typical cell
uses arelatively thick Ni-YSZ composite anode (around 1 mm) with
a thin YSZ dense electrolyte (around 10 #m) and a thin LSM-YSZ
composite cathode (around 50 pwm). It is well established that SOFC
performance depends greatly upon the structure of the composite
electrodes [1]. Thus, there is a need to develop predictive models
that can assist optimizing the cell architecture. The present paper
is concerned with models that describe solid-phase ion and elec-
tron transport at the particle scale (submicron) within composite
electrodes. The particular objective is to predict effective conduc-
tivity of a particle matrix as a function of particle size and packing
structure. Although the work is motivated primarily by solid-oxide
fuel cells (SOFC), the approach and results are considerably more
general.
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Porous composite electrodes involve three phases. The ion-
conducting phase (typically yttria-stabilized zirconia, YSZ, is
used in both the anode and cathode) must be a good oxygen-
jon 02~ conductor, with very little electronic conduction. The
electron-conducting phase (typically nickel, Ni, in the anode and
strontium-doped lanthanum manganate, LSM, in the cathode) must
have good electronic conduction, with very little ionic conduc-
tion. The pore phase must facilitate gas transport. Typically each of
these three phases occupies about one third of the overall volume.
Charge-transfer reactions proceed at the three-phase boundaries
that are formed at the intersections of the three phases. The solid-
phase particles and the pore spaces are typically on the order of a
fraction of a micron.

The composite electrode must accomplish several essential
functions. The electron-conducting phase must provide a low-
resistance path from the position where the electrons are produced
(or consumed) to the current collection. That is to say the
electronic-conducting phase must percolate through the thickness
of the composite electrode. Especially within a few tens of microns
around the dense electrolyte the ion-conducting phase must per-
colate, enabling ion-conduction to the three-phase boundaries [2].
When hydrocarbon fuels are used, the Ni phase in the anode also
serves as a reforming catalyst.

A structure that facilitates one function can sometimes serve to
frustrate another function. For example, small particles and pore
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Fig. 1. Illustration of a tubular solid-oxide fuel cell. The balloon shows geometrical
and functional aspects of the membrane-electrode assembly at the particle scale.

spaces tend to increase three-phase-boundary length, which facil-
itates the essential charge-transfer chemistry. However, the small
pore spaces also serve to increase gas-transport resistance, which
diminishes performance. Small particles can also decrease effective
ionic and electronic conductivity, which can negatively influence
performance. Because there are different functional needs in dif-
ferent regions of the composite electrode, functional grading of
the electrode can improve performance. For example, in the few
tens of microns near the dense electrolyte layer charge transfer is
most important [2]. In this region a functional layer with fine parti-
cles and small pore spaces is valuable. However, far from the dense
electrolyte there is no charge-transfer chemistry (i.e., all available
charge has been transferred nearer to the dense electrolyte). In
this region (usually the majority of an anode support structure)
performance is improved by using large pores that minimize gas-
transport resistance. Finding optimal electrode architectures that
balance competing tradeoffs can be challenging and there is a need
to understand quantitatively the influence of electrode structure
on performance.

At the relatively large cell scale (e.g., the tube in Fig. 1) mod-
els cannot resolve details at the particle scale [3]. The approach
in the present paper begins by synthesizing three-dimensional
microstructures using packed, partially overlapping, spherical
particles. From these random arrays of particles, geometrical char-
acteristics such as coordination number, percolation probability,
and three-phase-boundary length can be evaluated. With arrays
of submicron particles in a three-dimensional domain of a few
microns, it is possible model transport through the fully resolved
complex particle network. From the solutions of such microscale
models, it is possible to extract the effective conductivities that are
needed to model transport at the macroscale. The paper compares
effective properties derived from the fully resolved models with
those derived from percolation theory.

2. Prior literature

A significant and growing body of literature is devoted to
understanding complex electrode structure and performance at
the microscale. Experimental investigations include measuring
three-dimensional microstructure using a range of reconstruction
techniques. In some cases the measurements are correlated to
electrochemical performance. Other investigators use analytical
and computation methods to synthesize and model microstruc-
tures.

Some investigators measure the structure of actual electrodes.
Beginning with Wilson et al. [4], several groups have devel-
oped focused-ion-beam-scanning-electron-microscope (FIB-SEM)
experiments to reconstruct composite electrodes [5-12]. 1zzo et
al. have developed similar electrode reconstructions of actual
electrodes using X-ray tomography [13,14]. These investiga-
tions provide a great deal of quantitative information about
the complexity of actual electrodes. Stereological imaging and
reconstruction provide high-resolution measurements of three-
phase-boundary (TPB) lengths, phase volumes, specific surface and
interface areas, phase connectivity (percolation), and tortuosity.
Such measurements can be used to validate the simulated electrode
microstructures.

Monte-Carlo stochastic simulation techniques have been
used to represent electrode microstructures. Electron- and ion-
conducting particles can be either randomly packed [15-18] or
randomly distributed on lattice structures [19]. Random particle
networks can be further modified by numerical-sintering algo-
rithms to represent the composite electrodes more accurately.
Electrode structures can also be generated by using stochastic
reconstruction schemes, which are based upon spatial statistical
correlations that are derived from experimental images [20,21].

Reconstructed microstructures, either measured experimen-
tally or synthesized computationally, can be used in models to
investigate the interactions of microstructure with the operating
performance [11]. Electrode reconstructions can also be param-
eterized for incorporation into macroscopic-scale models, thus
effectively bridging scales from microstructure to cell performance
[10,22]. Important microstructural parameters include TPB length,
phase volume, phase surface and interface areas, phase connectiv-
ity and conductivity, and phase tortuosity.

Several investigations have been concerned with evaluating
phase tortuosity. Gostovic et al. [5] and Smith et al. [10] calculated
tortuosity by tracking the pore-center locations and evaluating
effective path lengths. Wilson et al. [4] evaluated the tortuosity by
converting the measured three-dimensional phase structures into
finite-element meshes and solving steady-state diffusion equa-
tions. An alternative approach is to apply a lattice Boltzmann
method (LBM) to solve a diffusion equation and derive a measure
of phase tortuosity [23,20,13,24,12]. Iwai et al. [12] showed that
a random-walk method and the LBM approach produced similar
measures of tortuosity.

Grid-based counting techniques have been widely used to esti-
mate TPB length [25,20,6,8,7,26]. Iwai et al. [12] developed a
volume-expansion method and a centroid method to estimate the
TPB length. Percolation theory and coordination number are also
used to evaluate the active TPB length in synthesized microstruc-
tures [15-18].

Although experimental reconstructions provide specific details
of complex microstructures, they offer relatively little predic-
tive capability. Simulation techniques, although not representing
actual microstructures exactly, provide a valuable tool for pre-
dicting the performance of alternative electrode architectures. By
using measurements to validate microstructural-synthesis tech-
niques, the predictive ability of simulation-based analysis is
improved.
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3. Percolation theory

At the macroscale, ion and electron transport is usually repre-
sented using the charge-conservation equations as

V(0 V®Pm)+Rm =0, (1)

where of, (m = ed for the electronic-conducting phase, and m =
el for the ionic-conducting phase) are the effective conductivities,
@, are the electric potentials, and Ry, are the net charge-transfer
rates. The challenge is to determine the effective conductivity in
the way that represents the complexities of the porous compos-
ite electrodes. Effective conductivities can be approximated based
upon coordination-number theory and the percolation theory as
[27],

o =onl(1- $g)¥mPml”, (2)

where o9, are the conductivities of the bulk material (i.e., material
from which particles are formed), ¢ is the porosity, Y, are the vol-
ume fractions based on solids alone (e.g., ¥n; = 0.5 and ¥rysz = 0.5
means that a composite Ni-YSZ anode is composed of 50% Ni and
50% YSZ), and y is called the Bruggeman factor that accounts for
tortuous conduction pathways. The Bruggeman factor is typically
assumed to be y = 1.5. The probability of percolation P, repre-
sents the probability that the m-phase particles form a connected
pathway through the electrode, enabling continuous conduction.

Bouvard and Lange [28] evaluated the probability of an m-phase
particle being in a percolated cluster of the same phase as

e ()

where the coordination number Z,; is the average number of the
m-phase particle neighbors of an m-phase particle. Assuming all the
particles have the same size, Zy; can be expressed as Zmm = YrmZ
where Z is the overall average coordination number, which is the
average number of contacts that a particular particle makes with
neighboring particles, independent of the phase or material identity
of the particles. It is often assumed that Z = 6 in a random packing
of binary spheres.

Kuo and Gupta [29] showed that the percolation threshold is
Z&m = 1.764, below which no cluster connecting both ends of the
electrode is possible. Suzuki and Oshima [30] proposed a more
accurate expression for the percolation probability as,

0.4
B 4.236 — Zym \ 2°
Pm = {1 - (W) ’ )

which has zero probability at the percolation threshold.
The percolated three-phase-boundary (TPB) length per unit vol-
ume can also be predicted from the percolation theory as [31]

}‘}FIPB = Led-eNedZed-elPedPel (5)

where foq.o = 27rsinf is the contact perimeter between an
ion-conducting particle and an electron-conducting particle. As
illustrated in Fig. 2, the particle radius is r and the contact angle
is 0. Z.q.¢1 is the average coordination number between ion- and
electron-conducting particles, and Zeq_e| = ¥e/Z When the particles
have the same size. Poq and P are the percolation probabilities of
electron- and ion-conducting particles, respectively. The number of
the electron-conducting particles per unit volume within the entire
composite electrode n.q can be evaluated as ngq = not¥eq Where
Nyot is the total number of particles per unit volume,

1- ¢y

(4/3)mr3” (6)

Mot =

“ 4 particle

Fig. 2. llustration of particle overlap angle. For different sized particles, the angle
0 is defined from the smaller particle.

4. Fully resolved model

The approach used in the present effort is quite different from
percolation theory. The composite structure is synthesized by
assembling a relatively small set of particles (hundreds of particles)
into a cubical region (typically a few microns on a side). Neighbor-
ing particles may overlap to approximate sintering. The particle
array is then discretized (here, a tetrahedral mesh as illustrated
in Fig. 3) such that a diffusive transport equation that is resolved
on the sub-particle scale can be solved. In this case, the intrinsic
material properties are used (i.e., the conductivity o3, not an effec-
tive conductivity of;). This approach accounts directly for particle
shapes and geometrical effects such as necking between particles.
Because there is a certain randomness in assembling the particle
arrays, many realizations are needed to deliver statistically valid
results.

The process to determine the effective conductivity begins by
solving a charge-conservation equation

V. (00VPp)=0 (7)

within the particle network. Because the intent here is only to
determine effective conductivities, the charge-transfer chemistry
is neglected. Solution requires boundary conditions on all faces of
the cube. For example, on the top face 0§27 the electrical potential
@y, is imposed as @, =1 and on the bottom face 9§25, @, = 0.
The side walls are assumed to be symmetry boundaries, specified

Fig. 3. A collection of randomly packed spheres with a tetrahedral mesh shown on
the particle surfaces.
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as n-V®,; =0, where n is a unit vector normal to the face. With
a solution in hand, the axial component of the current through
the particle network can be evaluated at either the top or bottom
surface as

jﬁ.,:/ odn.V@,dA = odn . Vd,dA, (8)
27 982

The integral considers only the particle-interface areas inter-
secting the top or bottom surfaces through which there can be
conduction.

The effective conductivity is defined to be the ratio of the axial
current through the particle network and the axial current through
a solid cube of the parent material. Axial current through a solid
cube is evaluated simply as
JL ©)
where Ais cross-sectional area of the dense cube. Thus, the effective
conductivities are evaluated as

ot :%. (10)

5. Particle-packing algorithms

Constructing particle-scale models depends upon an algorithm
to synthesize a particle and pore structure. For composite elec-
trodes, such a structure is composed of two particle types (i.e.,
ion-conducting and electron-conducting) and pore space. This is
most often accomplished using various packed-sphere models
[32,25], although at least one group uses rectangular elements [11].
Monodispersed spherical particles are used here, but the approach
is fully capable of using different shapes and polydispersed sizes.
In this paper two different approaches are developed for establish-
ing the particle positions; one is based upon a discrete-element
method and the other is a random packing.

Although random packing of simple shapes is convenient, it
should be recognized that real structures may not be so simply
represented. Actual electrode fabrication begins by ball milling
powders (nominally spherical particles) together with binders. In
the case of a Ni-YSZ anode, the Ni is in the form of nickel oxide,
NiO. The resulting slurry is formed into a nominal shape (e.g., tube)
by casting or extrusion. The part is then dried and fired at high
temperature, which causes the particles to sinter together. In some
cases the slurry may contain a pore former (e.g., graphite), which
is burned out during firing. Pore formers are used to create pore
spaces that are larger than would otherwise be present using the
functional powders alone. In a Ni-YSZ structure, the NiO must be
reduced to Ni before application in the fuel cell. The NiO reduction is
accomplished by reaction with H; at high temperature. Because the
NiO occupies a much larger volume than does the Ni, the reduction
process also opens pore space. Given such a fabrication process, it is
easy anticipate that the resulting structure may not be represented
simply as an assembly of packed spheres.

Fig. 4 shows the comparison of a microscopic image of an SOFC
with a model electrode structures based upon randomly packed
spheres. It is evident that packed spheres, or any other simple
shape, are not entirely adequate in representing the real struc-
ture. Nevertheless, models based upon packed spheres do provide
valuable quantitative insight about how electrode performance
depends upon microstructure. In addition to seeking physically
representative packing, a further objective here is to pack parti-
cles in ways that are consistent with assumptions made in models
based upon percolation theory. This provides a basis for comparing
resolved-particle results with percolation-theory predictions.

Fig. 4. Scanning electron microscope (SEM) image of an SOFC membrane-electrode
assembly (top) and composite electrode representations based upon randomly
packed spheres.

5.1. Discrete element method

The discrete element method (DEM) is a well-established
method for predicting the evolution of particle trajectories,
accounting for interparticle collisions and other relevant forces
[33]. The method provides a general framework for solving a set of
ordinary differential equations that express the Newtonian equa-
tions of motion for individual particles. Martin et al. [34] first used
a DEM approach to represent SOFC anodes, focusing on particle
deformation during sintering.

Briefly, as implemented here, the DEM packing algorithm
involves the following steps:

¢ Define a tall vertical rectangular domain, typically a few microns
on short sides. That is the height z is around three times greater
than the x and y dimensions.

e At the top of the rectangular domain (x-y plane) introduce small
(typically fraction of a micron) spherical particles with random
initial positions and velocities. Each particle is identified as either
an ion- or electron-conducting particle. The particles fall under
the influences of gravity and interactions with other particles.

¢ Solve Lagrangian equations of motion to predict the particle tra-
jectory until the particle comes to rest in the lower portion of the
rectangular domain.

® As a particle moves its motion is affected by the net forces and
torques it encounters by colliding with other particles and the
domain walls.

¢ The filling process is terminated when the lower portion of the
rectangular domain is filled with particles at rest, forming a nom-
inal cubical domain.

e The DEM process alone produces a set of particles that touch,
but do not overlap. To simulate sintering, the particle radii are
expanded to achieve a certain level of overlap.

For the narrow purposes of producing particle packing, the par-
ticle contact forces are modeled using a relatively simple spring
and dashpot analogy occurring over a finite time interval. A more
detailed DEM simulation could incorporate a more physically real-
istic modeling of all contact interactions. However, because the
objective of the present work is to use DEM simply as a means
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Fig.5. Array of spheres produced from the DEM packing algorithm. The lower image
highlights the contact areas between the spheres after artificial sintering.

to generate a packing configuration, there is no need to be con-
cerned with potentially complex particle-interaction forces. The
particle masses as well as the spring and dashpot parameters are
set somewhat arbitrarily to achieve reasonable computation times.

The results reported in this paper use uniform particles with
a radius of 0.3 wm. The bounding volume is chosen as 3.3 um in
the x and y directions. The filling process continues until the par-
ticles have filled the domain up to a z dimension about 3.3 pm.
Once the particle positions are established the particle radii are
increased to achieve a typical particle-intersection angle of 15°
(Fig. 2). This procedure approximates a sintering process, and is
consistent with approximations that are often made in percolation
theory [31]. Fig. 5 shows a typical particle-packing configuration
produced by the DEM method. The upper panel shows the parti-
cles packed inside the cubical domain. The lower panel highlights
the contact area between particles.

Porosity, which is an important characteristic of the microstruc-
ture, is found by a sampling algorithm. A large sequence of
randomly generated points (i.e., x, y, and z coordinates) within the
cubical domain are generated. Each point is evaluated to deter-
mine if it is within a solid particle or not. With sufficient numbers
of points, the porosity is established as the ratio of points that fall
outside solid particles and the points that fall within solid particles.
Points that fall within one particle diameter of the boundaries are
discounted so as to reduce boundary effects. The average porosity
is found to be about 32% for the DEM packing used here.

5.2. Random particle packing

The second approach for synthesizing a microstructure is based
upon the random generation of particles within a cubical domain.

Invalid configuration

Fig. 6. Valid and invalid particle-packing configurations.

Similar approaches have been used previously for studying perco-
lating clusters [28]. The algorithm begins by generating at random
a trial position (i.e., x, y, and z coordinates) for a spherical parti-
cle within a cubical domain. The particle position is tested against
a set of constraints to determine its validity. If valid, the parti-
cle is retained. Otherwise the trial particle is discarded. In either
case, a new particle position is generated and tested for validity.
The process continues until the cubical domain is filled with valid
particles.
The packing constraints are stated as follows:

1. Avalid particle must have contact or overlap with at least three
neighboring particles and/or the domain boundaries.

2. The intersection perimeter between particles must be circular. In
other words, as discussed below, a given particle cannot overlap
simultaneously with more than one particle.

3. The intersection angles must be 0° < 6 < 30° (Fig. 2), with an
average overlap angle of 15°.

Fig. 6 shows examples of valid and invalid particle intersections.
In the upper panel sphere 1 satisfies constraints with respect to
its contact with spheres 2 and 3 and surrounding domain bound-
aries. However, the configuration in the lower panel violates the
second constraint because the intersection of spheres 1 and 2 is
also intersected by sphere 3. The second constraint is imposed to
generate configurations that are similar to the ones obtained from
the DEM-based method and to be roughly consistent with com-
mon assumptions in percolation theory. However, this constraint
is not necessary and could be relaxed to produce closer packing and
smaller pore spaces.

Filling a cubical domain using the random-packing algorithm is
avery lengthy process because most randomly generated positions
fail to satisfy the packing criteria. However, the process is fully auto-
mated. To satisfy the first constraint, stable particles are initially
positioned next to the bounding walls where three or more contact
points are easily found within a nearly empty domain. As more and
more particles are generated, the interior of the domain is succes-
sively filled. There is reason to expect from percolation theory that
particle overlap angles (illustrated in Fig. 2) should be around 15°
[27,35]. However, because the particles are generated randomly, a
range of interaction angles between 0° and 30° is accepted, yielding
an average overlap of about 15°.

The porosity of the resulting microstructure is calculated in
exactly the same way as DEM. However due to the various
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constraints the porosities are found to be about 47%, which is sig-
nificantly higher than the porosities found via the DEM packing of
around 32%. It should be recognized that it is possible to produce
lower porosities (similar to those with the DEM-based method) by
relaxing the above constraints. However, doing so would cause the
particle-overlap characteristics in the resulting microstructure to
be qualitatively different from the DEM-generated microstructure.
Because it is interesting to compare the two packing methods, the
random packing is constrained for the purposes of this paper. A
porosity of 47% is relatively high for a typical SOFC electrode. How-
ever, the measurements reported by Iwai et al. [12] show porosities
in this range.

5.3. Discretization

Once the particle positions are established, the next step is
to discretize the structure. The particle coordinates and dimen-
sions of the bounding domain are imported into the ANSYS
GAMBIT mesh-generation software. Next, a set of spherical geomet-
ric solids representing electron-conducting and ion-conducting
particles are generated along with the surrounding rectangular vol-
ume. A sequence of Boolean-intersection operations are performed
on these primitives producing the final geometry comprising of
overlapping particles and boundaries. An unstructured tetrahedral
mesh is generated in the solid volumes. The complement of the
solid volumes formed by the spheres represent the pore volumes.
Although not used in the present paper, the pore regions can also be
meshed for solving the fluid-transport equations. The three-phase
boundaries can be automatically identified and the TPB lengths
computed.

The unstructured tetrahedral meshing is entirely general and
is in no way restricted to spherical particles or any other array of
simple shapes. If a detailed geometric specification is available (e.g.,
from an experimental reconstruction), the electrode structure can
be discretized. The simulation and analysis procedure is applied in
just the same way as for the spherical-particle representations.

6. Results and discussion

The primary objective of this paper is to estimate effective con-
ductivity. However, the model can also be used to evaluate the
mean coordination number that is used in percolation theory (Eq.
(4)). In percolation theory it is common to assume an average
overall coordination number around Z = 6. Both the coordination
number and the percolation probability can be explicitly evaluated
in the present fully resolved-particle model. Thus these two quanti-
ties can be used to provide further insight about percolation models
and as partial validation of the resolved-particle model.

6.1. Coordination number

The coordination number is calculated directly once the particle
positions are established. Because each instance of the particle-
generation process produces a different geometric configuration,
many such realizations are needed to obtain results that are sta-
tistically invariant with respect to the geometry and the particle
sample size. It is expected that the results obtained from simulat-
ing a relatively small sample size for a large number of realizations
should be virtually identical to that obtained from simulating a
large sample size with fewer realizations. Two different sample
sizes (150 and 300 particles) are simulated using the DEM-based
model to investigate the influence of particle sample sizes on the
coordination number. Neither of the packing algorithms described
above is limited by the number of particles simulated. However,
larger samples require greater computational resources for mesh-
ing and simulation, limiting the number of realizations that can be
practically considered.

6.8 g
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Fig. 7. Evolution of mean coordination number Z for 150 and 300 particles using
the DEM packing.

The 150-particle samples are run for 600 realizations and the
300-particle samples are run for 300 different realizations result-
ing in the consideration of a total 90,000 particles for each sample
size. A range of bins, initially empty and representing discrete
coordination numbers, are set up at the beginning of the computa-
tions. Following a given instance of the particle-generation process,
the coordination number for each particle is computed and the
appropriate bin count is incremented. Next, the mean coordina-
tion number is computed for all particles and a running average
is maintained over all realizations. The process is repeated until a
quasi-steady value of the mean coordination number is achieved.
This procedure effectively determines the number of realizations
(and hence particle sample size) required to achieve a statistically
invariant value of the mean coordination number. Additionally the
probability distribution function (PDF) of the coordination number
is obtained as a result of the simulations. Only particles which are
situated at least one particle diameter away from the walls are con-
sidered in the coordination-number calculation, thus minimizing
wall effects.

Fig. 7 shows the typical evolution of the mean coordination
number as a function of the number of realizations for 150 and
300 particles with the DEM packing. The mean coordination num-
ber asymptotically approaches Z ~ 6.7. This result confirms that
the strategy of performing a large number of simulations with a
limited sample size is theoretically sound. The final value of the
coordination number is consistent with results reported by others
[28].

Fig. 8 shows comparative histograms produced by the 150- and
300-particle simulations with the DEM packing. Once again itis evi-
dent that the PDF of coordination numbers obtained from the two
sample sizes are virtually identical. Similar trends are also observed
for the random-packing algorithm. Based upon experience with the
DEM-packing and the random-packing algorithms, all subsequent
simulations were performed with a sample size of 150 particles and
600 realizations.

1T 1 17T 17T 1T 1T 1T T T 1T T
3 150 particles

03

300 particles

0.1

Fraction of particles

lIIIllllIIIllIIIIIIIIIIIllIIIIIIII

el 1 | |

0o 1 2 3 4 5 6 7 8 9 10 1112 13 14
Coordination number

Fig. 8. Probability of mean coordination number Z, comparing samples of 150 and
300 particles with DEM packing.
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Fig. 9. A typical percolating cluster.

6.2. Percolation probability

Percolation probability plays an important role in evaluating
effective three-phase-boundary length and effective conductiv-
ity. Once a set of particles have been generated, clusters can be
identified, and the percolation probability evaluated. Comparing
the directly evaluated percolation probabilities with percolation
theory provides some partial validation of the resolved-particle
algorithms.

An algorithm is formulated to identify distinct clusters of
contiguous particles of a given type (i.e., ion-conducting or
electron-conducting). List-based data structures are established to
represent contiguous particles or clusters. Beginning with a par-
ticular particle, the algorithm keeps track of all particles that are
connected directly or indirectly, thereby forming a contiguous clus-
ter. The process is repeated for all particles. Finally all particles in
the domain are assigned to unique clusters. Once individual clus-
ters are identified, they are compared with the domain extents to
isolate only those clusters that percolate throughout the domain
in either the x-, y-, or z-direction. Fig. 9 shows a typical cluster
spanning the domain in the x-direction, thus forming a continuous
conduction pathway. The percolation probability for a given phase
volume fraction is calculated as the fraction of cases when one or
more percolating clusters are found.

Fig. 10 shows the percolation probabilities as functions of phase
volume fraction. The resolved-particle models predict that the per-
colation probability increases more slowly as a function of phase
volume fraction than the percolation theory (Eq. (4)). Moreover,
the particle models predict higher percolation probability at low
phase volume fraction. In other words, the percolation threshold
occurs at lower phase volume fraction. Nevertheless, the resolved
models predict the rapid increase in percolation probability in the
volume-fraction range 0.3 < ¥y < 0.5, indicating that the com-
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Fig. 11. Specific three-phase-boundary (TPB) lengths A¥I,B predicted by percolation

theory (i.e., Eq. (5)) compared to the resolved-particle model with DEM packing. The
percolated TPB lengths predicted by percolation theory use two alternatives (i.e., Eq.
(3) or (4)) to evaluate the percolation probabilities.

putational approach provides a reasonable representation of the
microstructure.

6.3. Three-phase-boundary length

Accurate prediction of the three-phase-boundary (TPB) length
is an important aspect of modeling charge-transfer chemistry in
SOFCs. The TPB length is evaluated by discretizing the circles that
are formed around the intersections between an ion-conducting
and electron-conducting particles, and then counting the number
of points on that boundary that are also shared by the adjoining
pore volume.

Fig. 11 shows TPB lengths (i.e., length per unit volume) pre-
dicted by percolation theory and the DEM packing algorithm. For
a three-phase boundary to be effective in charge transfer, both
ions and electrons must be available. That is, there must be per-
colation for both the ion- and electron-conducting phases to the
TPB. The upper panel in Fig. 11 is concerned with the entire TPB
lengths, independent of whether there is percolation or not. The
resolved model and the percolation theory (i.e., Eq. (5), assuming
Pe) = Pog = 1) agree well, indicating that the geometric evaluation
of complete TPB length is consistent with percolation theory. The
lower panel of Fig. 11 is concerned with the percolated TPB length.
Two percolation-theory results are shown, using Eqs. (3) (Bouvard
and Lange [28]) and (4) (Suzuki and Oshima [30]) to evaluate the
percolation probabilities. Owing to lack of percolation for one of the
phases at high and low volume fractions, the percolated TPB shows
a much narrower distribution than the complete TPB length. The
DEM simulations agree reasonably well with the percolation the-
ory, although the distribution functions are wider and the peak TPB
length is somewhat lower.

Fig. 12 shows TPB lengths predicted by the random-packing
algorithm. Because the porosity is higher than in the DEM simula-
tions, the TPB lengths are generally smaller for the random packing.
The widths of the percolated TPB distributions are comparable for
the DEM and random-packing cases, but the predicted peak per-
colated TPB lengths are considerably lower than the percolation
theory for the random-packing simulations.
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theory (i.e., Eq. (5)) compared to the resolved-particle model with random packing.
The percolated TPB lengths predicted by percolation theory use two alternatives
(i.e., Eq. (3) or (4)) to evaluate the percolation probabilities.

6.4. Effective conductivity

The resolved-particle models evaluate the effective conduc-
tivity directly. However, based upon percolation theory, one can
anticipate certain functional dependencies. Eq. (2) shows that

Fig. 13. Conduction in two different percolating clusters. Colors indicate electric
potential, with red being high and blue being low. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of the
article.)
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Fig. 14. Predicted effective conductivities of, as functions of solid-phase volume
fraction.

the effective conductivity depends upon the percolation prob-
ability and the tortuosity of the conduction pathways (i.e., the
Bruggeman factor, y). The probability of a percolating cluster of
a certain particle type increases with increasing particle volume
fraction.

The resolved-particle models are applied for a wide range of
phase volume fractions. Once a percolating cluster is identified, a
pure diffusion problem is solved for a generic scalar (e.g., electric
potential) with Dirichlet boundary conditions specified at each end
(Eq. (7)). Fig. 13 shows typical surface distributions of the scalar
in clusters for two different realizations (particle configurations).
To obtain statistically invariant results, the simulations are run for
twenty distinct realizations corresponding to each phase volume
fraction. The effective conductivity is defined as the ratio of the total
current through the conducting clusters for a given phase volume
fraction and the ideal current through the cubical volume (Eq. (10)).

Fig. 14 shows predicted effective conductivities as functions of
phase volume fraction for both DEM and random packing. The DEM
packing produces average porosity of ¢g = 0.32 and the random
packing produces average porosity of ¢g = 0.47. The figure also
shows comparisons with “standard” percolation theory (i.e., Eq.
(2)), but using different values of the Bruggeman factor. It is evident
that the commonly used value of y = 1.5 produces much higher
effective conductivities than those predicted by the fully resolved
models. A value of y ~ 3.5 is consistent with the resolved-particle
simulations.

There is some evidence that the effective conductivity predicted
by conventional percolation theory (i.e., Bruggeman exponent of
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y = 1.5) may be too high. Recent publications by Iwai et al.[12] and
Wang et al. [36] are consistent with the present resolved-particle
findings, showing significant deviations from percolation theory.
Iwai et al. propose that the effective conductivity may be evaluated
as [12]

ot _ o0 (1= 8e)¥m an
Tm

where 1y, is a tortuosity factor. In this equation (1 — ¢¢)/v¥m is the
fraction of the entire volume occupied by phase m, whereas ¥, is
the volume fraction of the solid phases alone. Although the tortu-
osity factors reported by Iwai et al. are strongly anisotropic, even
the least tortuous paths produce effective conductivities that are
much lower than those predicted by Eq. (2).

Wang et al. [36] formulated stochastic representations of PEMFC
composite cathodes, assuming the microstructure to be repre-
sented by randomly generated cubes. They simulated transport
and charge transfer using a fully resolved model similar to the
one developed in the present paper. Comparing the fully resolved
results to a one-dimensional macromodel suggested a Bruggeman
factor between 3.5 and 4.5. Thus, the Wang et al. results are also
consistent with the present models.

The Bruggeman factor y is intended to account for two separate
phenomena. One is the convoluted nature of conduction pathways
and second is the possibility of isolated non-percolating clusters
that do not contribute to conduction. Although the percolation
probability (i.e., the probability that at least one cluster will perco-
late) is unity for iy, > 0.5, there may be islands of non-percolating
particles that are not taken into account by Eq. (2). The fully resolved
models capture such islands and thus predict significantly lower
values of effective conductivity than the percolation theory.

7. Conclusions

A fully resolved-particle-based model of composite electrodes
has been developed and applied to predict average coordination
numbers, percolation probabilities, TPB lengths, and effective con-
ductivities of the packed-particle networks. Two different packing
algorithms are used to synthesize microstructures from spheri-
cal particles, with both algorithms producing similar results. Once
a particle-based microstructure is generated, the entire particle
matrix is discretized with a tetrahedral mesh network. A charge-
conservation equation is solved to predict current through the
particle network. These results are then used derive an effective
conductivity that is represented as a fraction of the intrinsic mate-
rial conductivity and microstructural characteristics of the particle
network.

The particle-packing algorithms are random, causing each
realization of a particle packing to be different. Thus, multiple sim-
ulations are needed to develop statistically valid results. The results
show that a few hundred particles with a few hundred realizations
are sufficient to reduce statistical variations to within acceptable
levels.

Coordination numbers, percolation probabilities, and TPB
lengths can be evaluated based upon packing geometry alone.
These results are found to be consistent with percolation theory,
serving as partial validation of the model. The effective conduc-
tivities that are derived from the fully resolved simulations are
especially valuable in larger scale models where the particle scale
cannot be resolved. The effective conductivities are found to be
significantly smaller than those predicted by standard percolation
theory. However, using a Bruggeman factor of y = 3.5 instead of
the commonly used y = 1.5 brings the percolation prediction in
line with the fully resolved results.

The results in the present paper are concerned with uniform-
diameter spherical particles. One reason for this choice is to
compare results with percolation theory. However, the resolved-
particle modeling approach accommodates different particle
shapes and sizes, thus providing the capability to explore and eval-
uate innovative electrode architectures. Moreover, the model can
be extended easily to evaluate fluid-phase transport through the
pore volumes.
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