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This paper develops particle-resolved simulations to predict conductivity within porous composite
electrodes. Hundreds of spherical particles (order fractions of a micron) are packed randomly into a
cubical region (order of a few microns), using two alternative packing algorithms. The composite struc-
tures include both ion-conducting and electron-conducting particles. The particle network is discretized
using tetrahedral meshes that fully resolve the interiors of the particles and their intersections. Charge-
conservation equations are solved to predict current through the network. These simulations are used
to derive the effective conductivities that are required for macroscale simulations at length scales much
larger than the particle scale. Because the microstructures are synthesized via random particle packing,
omposite electrode

ffective conductivity
ercolation theory

multiple realizations are needed to deliver statistically invariant results. The results show that a few
hundred particles with a few hundred realizations is sufficient. Predicted coordination numbers, perco-
lation probabilities, and three-phase-boundary lengths are consistent with percolation theory, but the
predicted effective conductivities are significantly smaller than those predicted with conventional per-
colation theory. By adjusting the Bruggeman factor from the conventional value of 1.5–3.5 brings the

ction
percolation-theory predi

. Introduction

The objective of this paper is to develop microstructural models
f composite electrodes that assist in predicting effective properties
hat can be used in larger scale continuum models. An anode-
upported tubular SOFC, such as illustrated in Fig. 1, might be on
he order of 100 mm long and 10 mm in diameter. A typical cell
ses a relatively thick Ni–YSZ composite anode (around 1 mm) with
thin YSZ dense electrolyte (around 10�m) and a thin LSM–YSZ

omposite cathode (around 50�m). It is well established that SOFC
erformance depends greatly upon the structure of the composite
lectrodes [1]. Thus, there is a need to develop predictive models
hat can assist optimizing the cell architecture. The present paper
s concerned with models that describe solid-phase ion and elec-
ron transport at the particle scale (submicron) within composite
lectrodes. The particular objective is to predict effective conduc-
ivity of a particle matrix as a function of particle size and packing

tructure. Although the work is motivated primarily by solid-oxide
uel cells (SOFC), the approach and results are considerably more
eneral.

∗ Corresponding author. Tel.: +1 303 273 3379; fax: +1 303 273 3602.
E-mail address: rjkee@mines.edu (R.J. Kee).

378-7753/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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for effective conductivity in line with the fully resolved results.
© 2010 Elsevier B.V. All rights reserved.

Porous composite electrodes involve three phases. The ion-
conducting phase (typically yttria-stabilized zirconia, YSZ, is
used in both the anode and cathode) must be a good oxygen-
ion O2− conductor, with very little electronic conduction. The
electron-conducting phase (typically nickel, Ni, in the anode and
strontium-doped lanthanum manganate, LSM, in the cathode) must
have good electronic conduction, with very little ionic conduc-
tion. The pore phase must facilitate gas transport. Typically each of
these three phases occupies about one third of the overall volume.
Charge-transfer reactions proceed at the three-phase boundaries
that are formed at the intersections of the three phases. The solid-
phase particles and the pore spaces are typically on the order of a
fraction of a micron.

The composite electrode must accomplish several essential
functions. The electron-conducting phase must provide a low-
resistance path from the position where the electrons are produced
(or consumed) to the current collection. That is to say the
electronic-conducting phase must percolate through the thickness
of the composite electrode. Especially within a few tens of microns
around the dense electrolyte the ion-conducting phase must per-

colate, enabling ion-conduction to the three-phase boundaries [2].
When hydrocarbon fuels are used, the Ni phase in the anode also
serves as a reforming catalyst.

A structure that facilitates one function can sometimes serve to
frustrate another function. For example, small particles and pore

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:rjkee@mines.edu
dx.doi.org/10.1016/j.jpowsour.2010.04.013
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Fig. 1. Illustration of a tubular solid-oxide fuel cell. The balloon shows geometrical
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actual microstructures exactly, provide a valuable tool for pre-
dicting the performance of alternative electrode architectures. By
using measurements to validate microstructural-synthesis tech-
nd functional aspects of the membrane-electrode assembly at the particle scale.

paces tend to increase three-phase-boundary length, which facil-
tates the essential charge-transfer chemistry. However, the small
ore spaces also serve to increase gas-transport resistance, which
iminishes performance. Small particles can also decrease effective

onic and electronic conductivity, which can negatively influence
erformance. Because there are different functional needs in dif-
erent regions of the composite electrode, functional grading of
he electrode can improve performance. For example, in the few
ens of microns near the dense electrolyte layer charge transfer is

ost important [2]. In this region a functional layer with fine parti-
les and small pore spaces is valuable. However, far from the dense
lectrolyte there is no charge-transfer chemistry (i.e., all available
harge has been transferred nearer to the dense electrolyte). In
his region (usually the majority of an anode support structure)
erformance is improved by using large pores that minimize gas-
ransport resistance. Finding optimal electrode architectures that
alance competing tradeoffs can be challenging and there is a need
o understand quantitatively the influence of electrode structure
n performance.

At the relatively large cell scale (e.g., the tube in Fig. 1) mod-
ls cannot resolve details at the particle scale [3]. The approach
n the present paper begins by synthesizing three-dimensional

icrostructures using packed, partially overlapping, spherical
articles. From these random arrays of particles, geometrical char-
cteristics such as coordination number, percolation probability,
nd three-phase-boundary length can be evaluated. With arrays
f submicron particles in a three-dimensional domain of a few
icrons, it is possible model transport through the fully resolved

omplex particle network. From the solutions of such microscale
odels, it is possible to extract the effective conductivities that are

eeded to model transport at the macroscale. The paper compares

ffective properties derived from the fully resolved models with
hose derived from percolation theory.
urces 195 (2010) 6671–6679

2. Prior literature

A significant and growing body of literature is devoted to
understanding complex electrode structure and performance at
the microscale. Experimental investigations include measuring
three-dimensional microstructure using a range of reconstruction
techniques. In some cases the measurements are correlated to
electrochemical performance. Other investigators use analytical
and computation methods to synthesize and model microstruc-
tures.

Some investigators measure the structure of actual electrodes.
Beginning with Wilson et al. [4], several groups have devel-
oped focused-ion-beam–scanning-electron-microscope (FIB–SEM)
experiments to reconstruct composite electrodes [5–12]. Izzo et
al. have developed similar electrode reconstructions of actual
electrodes using X-ray tomography [13,14]. These investiga-
tions provide a great deal of quantitative information about
the complexity of actual electrodes. Stereological imaging and
reconstruction provide high-resolution measurements of three-
phase-boundary (TPB) lengths, phase volumes, specific surface and
interface areas, phase connectivity (percolation), and tortuosity.
Such measurements can be used to validate the simulated electrode
microstructures.

Monte-Carlo stochastic simulation techniques have been
used to represent electrode microstructures. Electron- and ion-
conducting particles can be either randomly packed [15–18] or
randomly distributed on lattice structures [19]. Random particle
networks can be further modified by numerical-sintering algo-
rithms to represent the composite electrodes more accurately.
Electrode structures can also be generated by using stochastic
reconstruction schemes, which are based upon spatial statistical
correlations that are derived from experimental images [20,21].

Reconstructed microstructures, either measured experimen-
tally or synthesized computationally, can be used in models to
investigate the interactions of microstructure with the operating
performance [11]. Electrode reconstructions can also be param-
eterized for incorporation into macroscopic-scale models, thus
effectively bridging scales from microstructure to cell performance
[10,22]. Important microstructural parameters include TPB length,
phase volume, phase surface and interface areas, phase connectiv-
ity and conductivity, and phase tortuosity.

Several investigations have been concerned with evaluating
phase tortuosity. Gostovic et al. [5] and Smith et al. [10] calculated
tortuosity by tracking the pore-center locations and evaluating
effective path lengths. Wilson et al. [4] evaluated the tortuosity by
converting the measured three-dimensional phase structures into
finite-element meshes and solving steady-state diffusion equa-
tions. An alternative approach is to apply a lattice Boltzmann
method (LBM) to solve a diffusion equation and derive a measure
of phase tortuosity [23,20,13,24,12]. Iwai et al. [12] showed that
a random-walk method and the LBM approach produced similar
measures of tortuosity.

Grid-based counting techniques have been widely used to esti-
mate TPB length [25,20,6,8,7,26]. Iwai et al. [12] developed a
volume-expansion method and a centroid method to estimate the
TPB length. Percolation theory and coordination number are also
used to evaluate the active TPB length in synthesized microstruc-
tures [15–18].

Although experimental reconstructions provide specific details
of complex microstructures, they offer relatively little predic-
tive capability. Simulation techniques, although not representing
niques, the predictive ability of simulation-based analysis is
improved.
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determine effective conductivities, the charge-transfer chemistry
is neglected. Solution requires boundary conditions on all faces of
the cube. For example, on the top face ∂˝T the electrical potential
˚m is imposed as ˚m = 1 and on the bottom face ∂˝B, ˚m = 0.
The side walls are assumed to be symmetry boundaries, specified
J. Sanyal et al. / Journal of Pow

. Percolation theory

At the macroscale, ion and electron transport is usually repre-
ented using the charge-conservation equations as

· (�e
m∇˚m) + Rm = 0, (1)

here �e
m (m = ed for the electronic-conducting phase, and m =

l for the ionic-conducting phase) are the effective conductivities,
m are the electric potentials, and Rm are the net charge-transfer

ates. The challenge is to determine the effective conductivity in
he way that represents the complexities of the porous compos-
te electrodes. Effective conductivities can be approximated based
pon coordination-number theory and the percolation theory as
27],

e
m = �0

m[(1 − �g) mPm]� , (2)

here �0
m are the conductivities of the bulk material (i.e., material

rom which particles are formed),�g is the porosity, m are the vol-
me fractions based on solids alone (e.g., Ni = 0.5 and YSZ = 0.5
eans that a composite Ni–YSZ anode is composed of 50% Ni and

0% YSZ), and � is called the Bruggeman factor that accounts for
ortuous conduction pathways. The Bruggeman factor is typically
ssumed to be � = 1.5. The probability of percolation Pm repre-
ents the probability that the m-phase particles form a connected
athway through the electrode, enabling continuous conduction.

Bouvard and Lange [28] evaluated the probability of an m-phase
article being in a percolated cluster of the same phase as

m =
[

1 −
(

4 − Zmm
2

)2.5
]0.4

, (3)

here the coordination number Zmm is the average number of the
-phase particle neighbors of an m-phase particle. Assuming all the
articles have the same size, Zmm can be expressed as Zmm =  mZ̄
here Z̄ is the overall average coordination number, which is the

verage number of contacts that a particular particle makes with
eighboring particles, independent of the phase or material identity
f the particles. It is often assumed that Z̄ = 6 in a random packing
f binary spheres.

Kuo and Gupta [29] showed that the percolation threshold is
c
mm = 1.764, below which no cluster connecting both ends of the
lectrode is possible. Suzuki and Oshima [30] proposed a more
ccurate expression for the percolation probability as,

m =
[

1 −
(

4.236 − Zmm
2.742

)2.5
]0.4

, (4)

hich has zero probability at the percolation threshold.
The percolated three-phase-boundary (TPB) length per unit vol-

me can also be predicted from the percolation theory as [31]

V
TPB = �ed-elnedZed-elPedPel, (5)

here �ed-el = 2�r sin 	 is the contact perimeter between an
on-conducting particle and an electron-conducting particle. As
llustrated in Fig. 2, the particle radius is r and the contact angle
s 	. Zed-el is the average coordination number between ion- and
lectron-conducting particles, and Zed-el =  elZ̄ when the particles
ave the same size. Ped and Pel are the percolation probabilities of
lectron- and ion-conducting particles, respectively. The number of
he electron-conducting particles per unit volume within the entire

omposite electrode ned can be evaluated as ned = ntot ed where
tot is the total number of particles per unit volume,

tot = 1 − �g

(4/3)�r3
. (6)
Fig. 2. Illustration of particle overlap angle. For different sized particles, the angle
	 is defined from the smaller particle.

4. Fully resolved model

The approach used in the present effort is quite different from
percolation theory. The composite structure is synthesized by
assembling a relatively small set of particles (hundreds of particles)
into a cubical region (typically a few microns on a side). Neighbor-
ing particles may overlap to approximate sintering. The particle
array is then discretized (here, a tetrahedral mesh as illustrated
in Fig. 3) such that a diffusive transport equation that is resolved
on the sub-particle scale can be solved. In this case, the intrinsic
material properties are used (i.e., the conductivity �0

m, not an effec-
tive conductivity �e

m). This approach accounts directly for particle
shapes and geometrical effects such as necking between particles.
Because there is a certain randomness in assembling the particle
arrays, many realizations are needed to deliver statistically valid
results.

The process to determine the effective conductivity begins by
solving a charge-conservation equation

∇ · (�0
m∇˚m) = 0 (7)

within the particle network. Because the intent here is only to
Fig. 3. A collection of randomly packed spheres with a tetrahedral mesh shown on
the particle surfaces.
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s n · ∇˚m = 0, where n is a unit vector normal to the face. With
solution in hand, the axial component of the current through

he particle network can be evaluated at either the top or bottom
urface as

e
m =

∫
∂˝T

�0
mn · ∇˚mdA =

∫
∂˝B

�0
mn · ∇˚mdA, (8)

The integral considers only the particle-interface areas inter-
ecting the top or bottom surfaces through which there can be
onduction.

The effective conductivity is defined to be the ratio of the axial
urrent through the particle network and the axial current through
solid cube of the parent material. Axial current through a solid

ube is evaluated simply as

0
m = A�0

m
d˚m
dx

, (9)

here A is cross-sectional area of the dense cube. Thus, the effective
onductivities are evaluated as

e
m = Jem

J0m
. (10)

. Particle-packing algorithms

Constructing particle-scale models depends upon an algorithm
o synthesize a particle and pore structure. For composite elec-
rodes, such a structure is composed of two particle types (i.e.,
on-conducting and electron-conducting) and pore space. This is

ost often accomplished using various packed-sphere models
32,25], although at least one group uses rectangular elements [11].

onodispersed spherical particles are used here, but the approach
s fully capable of using different shapes and polydispersed sizes.
n this paper two different approaches are developed for establish-
ng the particle positions; one is based upon a discrete-element

ethod and the other is a random packing.
Although random packing of simple shapes is convenient, it

hould be recognized that real structures may not be so simply
epresented. Actual electrode fabrication begins by ball milling
owders (nominally spherical particles) together with binders. In
he case of a Ni–YSZ anode, the Ni is in the form of nickel oxide,
iO. The resulting slurry is formed into a nominal shape (e.g., tube)
y casting or extrusion. The part is then dried and fired at high
emperature, which causes the particles to sinter together. In some
ases the slurry may contain a pore former (e.g., graphite), which
s burned out during firing. Pore formers are used to create pore
paces that are larger than would otherwise be present using the
unctional powders alone. In a Ni–YSZ structure, the NiO must be
educed to Ni before application in the fuel cell. The NiO reduction is
ccomplished by reaction with H2 at high temperature. Because the
iO occupies a much larger volume than does the Ni, the reduction
rocess also opens pore space. Given such a fabrication process, it is
asy anticipate that the resulting structure may not be represented
imply as an assembly of packed spheres.

Fig. 4 shows the comparison of a microscopic image of an SOFC
ith a model electrode structures based upon randomly packed

pheres. It is evident that packed spheres, or any other simple
hape, are not entirely adequate in representing the real struc-
ure. Nevertheless, models based upon packed spheres do provide
aluable quantitative insight about how electrode performance

epends upon microstructure. In addition to seeking physically
epresentative packing, a further objective here is to pack parti-
les in ways that are consistent with assumptions made in models
ased upon percolation theory. This provides a basis for comparing
esolved-particle results with percolation-theory predictions.
Fig. 4. Scanning electron microscope (SEM) image of an SOFC membrane-electrode
assembly (top) and composite electrode representations based upon randomly
packed spheres.

5.1. Discrete element method

The discrete element method (DEM) is a well-established
method for predicting the evolution of particle trajectories,
accounting for interparticle collisions and other relevant forces
[33]. The method provides a general framework for solving a set of
ordinary differential equations that express the Newtonian equa-
tions of motion for individual particles. Martin et al. [34] first used
a DEM approach to represent SOFC anodes, focusing on particle
deformation during sintering.

Briefly, as implemented here, the DEM packing algorithm
involves the following steps:

• Define a tall vertical rectangular domain, typically a few microns
on short sides. That is the height z is around three times greater
than the x and y dimensions.

• At the top of the rectangular domain (x–y plane) introduce small
(typically fraction of a micron) spherical particles with random
initial positions and velocities. Each particle is identified as either
an ion- or electron-conducting particle. The particles fall under
the influences of gravity and interactions with other particles.

• Solve Lagrangian equations of motion to predict the particle tra-
jectory until the particle comes to rest in the lower portion of the
rectangular domain.

• As a particle moves its motion is affected by the net forces and
torques it encounters by colliding with other particles and the
domain walls.

• The filling process is terminated when the lower portion of the
rectangular domain is filled with particles at rest, forming a nom-
inal cubical domain.

• The DEM process alone produces a set of particles that touch,
but do not overlap. To simulate sintering, the particle radii are
expanded to achieve a certain level of overlap.

For the narrow purposes of producing particle packing, the par-

ticle contact forces are modeled using a relatively simple spring
and dashpot analogy occurring over a finite time interval. A more
detailed DEM simulation could incorporate a more physically real-
istic modeling of all contact interactions. However, because the
objective of the present work is to use DEM simply as a means
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ig. 5. Array of spheres produced from the DEM packing algorithm. The lower image
ighlights the contact areas between the spheres after artificial sintering.

o generate a packing configuration, there is no need to be con-
erned with potentially complex particle-interaction forces. The
article masses as well as the spring and dashpot parameters are
et somewhat arbitrarily to achieve reasonable computation times.

The results reported in this paper use uniform particles with
radius of 0.3 �m. The bounding volume is chosen as 3.3 �m in

he x and y directions. The filling process continues until the par-
icles have filled the domain up to a z dimension about 3.3 �m.
nce the particle positions are established the particle radii are

ncreased to achieve a typical particle-intersection angle of 15◦

Fig. 2). This procedure approximates a sintering process, and is
onsistent with approximations that are often made in percolation
heory [31]. Fig. 5 shows a typical particle-packing configuration
roduced by the DEM method. The upper panel shows the parti-
les packed inside the cubical domain. The lower panel highlights
he contact area between particles.

Porosity, which is an important characteristic of the microstruc-
ure, is found by a sampling algorithm. A large sequence of
andomly generated points (i.e., x, y, and z coordinates) within the
ubical domain are generated. Each point is evaluated to deter-
ine if it is within a solid particle or not. With sufficient numbers

f points, the porosity is established as the ratio of points that fall
utside solid particles and the points that fall within solid particles.
oints that fall within one particle diameter of the boundaries are
iscounted so as to reduce boundary effects. The average porosity

s found to be about 32% for the DEM packing used here.
.2. Random particle packing

The second approach for synthesizing a microstructure is based
pon the random generation of particles within a cubical domain.
Fig. 6. Valid and invalid particle-packing configurations.

Similar approaches have been used previously for studying perco-
lating clusters [28]. The algorithm begins by generating at random
a trial position (i.e., x, y, and z coordinates) for a spherical parti-
cle within a cubical domain. The particle position is tested against
a set of constraints to determine its validity. If valid, the parti-
cle is retained. Otherwise the trial particle is discarded. In either
case, a new particle position is generated and tested for validity.
The process continues until the cubical domain is filled with valid
particles.

The packing constraints are stated as follows:

1. A valid particle must have contact or overlap with at least three
neighboring particles and/or the domain boundaries.

2. The intersection perimeter between particles must be circular. In
other words, as discussed below, a given particle cannot overlap
simultaneously with more than one particle.

3. The intersection angles must be 0◦ ≤ 	 ≤ 30◦ (Fig. 2), with an
average overlap angle of 15◦.

Fig. 6 shows examples of valid and invalid particle intersections.
In the upper panel sphere 1 satisfies constraints with respect to
its contact with spheres 2 and 3 and surrounding domain bound-
aries. However, the configuration in the lower panel violates the
second constraint because the intersection of spheres 1 and 2 is
also intersected by sphere 3. The second constraint is imposed to
generate configurations that are similar to the ones obtained from
the DEM-based method and to be roughly consistent with com-
mon assumptions in percolation theory. However, this constraint
is not necessary and could be relaxed to produce closer packing and
smaller pore spaces.

Filling a cubical domain using the random-packing algorithm is
a very lengthy process because most randomly generated positions
fail to satisfy the packing criteria. However, the process is fully auto-
mated. To satisfy the first constraint, stable particles are initially
positioned next to the bounding walls where three or more contact
points are easily found within a nearly empty domain. As more and
more particles are generated, the interior of the domain is succes-
sively filled. There is reason to expect from percolation theory that
particle overlap angles (illustrated in Fig. 2) should be around 15◦
[27,35]. However, because the particles are generated randomly, a
range of interaction angles between 0◦ and 30◦ is accepted, yielding
an average overlap of about 15◦.

The porosity of the resulting microstructure is calculated in
exactly the same way as DEM. However due to the various
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sample sizes are virtually identical. Similar trends are also observed
for the random-packing algorithm. Based upon experience with the
DEM-packing and the random-packing algorithms, all subsequent
simulations were performed with a sample size of 150 particles and
600 realizations.
676 J. Sanyal et al. / Journal of Pow

onstraints the porosities are found to be about 47%, which is sig-
ificantly higher than the porosities found via the DEM packing of
round 32%. It should be recognized that it is possible to produce
ower porosities (similar to those with the DEM-based method) by
elaxing the above constraints. However, doing so would cause the
article-overlap characteristics in the resulting microstructure to
e qualitatively different from the DEM-generated microstructure.
ecause it is interesting to compare the two packing methods, the
andom packing is constrained for the purposes of this paper. A
orosity of 47% is relatively high for a typical SOFC electrode. How-
ver, the measurements reported by Iwai et al. [12] show porosities
n this range.

.3. Discretization

Once the particle positions are established, the next step is
o discretize the structure. The particle coordinates and dimen-
ions of the bounding domain are imported into the ANSYS
ambitmesh-generation software. Next, a set of spherical geomet-
ic solids representing electron-conducting and ion-conducting
articles are generated along with the surrounding rectangular vol-
me. A sequence of Boolean-intersection operations are performed
n these primitives producing the final geometry comprising of
verlapping particles and boundaries. An unstructured tetrahedral
esh is generated in the solid volumes. The complement of the

olid volumes formed by the spheres represent the pore volumes.
lthough not used in the present paper, the pore regions can also be
eshed for solving the fluid-transport equations. The three-phase

oundaries can be automatically identified and the TPB lengths
omputed.

The unstructured tetrahedral meshing is entirely general and
s in no way restricted to spherical particles or any other array of
imple shapes. If a detailed geometric specification is available (e.g.,
rom an experimental reconstruction), the electrode structure can
e discretized. The simulation and analysis procedure is applied in

ust the same way as for the spherical-particle representations.

. Results and discussion

The primary objective of this paper is to estimate effective con-
uctivity. However, the model can also be used to evaluate the
ean coordination number that is used in percolation theory (Eq.

4)). In percolation theory it is common to assume an average
verall coordination number around Z̄ = 6. Both the coordination
umber and the percolation probability can be explicitly evaluated

n the present fully resolved-particle model. Thus these two quanti-
ies can be used to provide further insight about percolation models
nd as partial validation of the resolved-particle model.

.1. Coordination number

The coordination number is calculated directly once the particle
ositions are established. Because each instance of the particle-
eneration process produces a different geometric configuration,
any such realizations are needed to obtain results that are sta-

istically invariant with respect to the geometry and the particle
ample size. It is expected that the results obtained from simulat-
ng a relatively small sample size for a large number of realizations
hould be virtually identical to that obtained from simulating a
arge sample size with fewer realizations. Two different sample
izes (150 and 300 particles) are simulated using the DEM-based
odel to investigate the influence of particle sample sizes on the
oordination number. Neither of the packing algorithms described
bove is limited by the number of particles simulated. However,
arger samples require greater computational resources for mesh-
ng and simulation, limiting the number of realizations that can be
ractically considered.
Fig. 7. Evolution of mean coordination number Z̄ for 150 and 300 particles using
the DEM packing.

The 150-particle samples are run for 600 realizations and the
300-particle samples are run for 300 different realizations result-
ing in the consideration of a total 90,000 particles for each sample
size. A range of bins, initially empty and representing discrete
coordination numbers, are set up at the beginning of the computa-
tions. Following a given instance of the particle-generation process,
the coordination number for each particle is computed and the
appropriate bin count is incremented. Next, the mean coordina-
tion number is computed for all particles and a running average
is maintained over all realizations. The process is repeated until a
quasi-steady value of the mean coordination number is achieved.
This procedure effectively determines the number of realizations
(and hence particle sample size) required to achieve a statistically
invariant value of the mean coordination number. Additionally the
probability distribution function (PDF) of the coordination number
is obtained as a result of the simulations. Only particles which are
situated at least one particle diameter away from the walls are con-
sidered in the coordination-number calculation, thus minimizing
wall effects.

Fig. 7 shows the typical evolution of the mean coordination
number as a function of the number of realizations for 150 and
300 particles with the DEM packing. The mean coordination num-
ber asymptotically approaches Z̄ ≈ 6.7. This result confirms that
the strategy of performing a large number of simulations with a
limited sample size is theoretically sound. The final value of the
coordination number is consistent with results reported by others
[28].

Fig. 8 shows comparative histograms produced by the 150- and
300-particle simulations with the DEM packing. Once again it is evi-
dent that the PDF of coordination numbers obtained from the two
Fig. 8. Probability of mean coordination number Z̄ , comparing samples of 150 and
300 particles with DEM packing.
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Fig. 9. A typical percolating cluster.

.2. Percolation probability

Percolation probability plays an important role in evaluating
ffective three-phase-boundary length and effective conductiv-
ty. Once a set of particles have been generated, clusters can be
dentified, and the percolation probability evaluated. Comparing
he directly evaluated percolation probabilities with percolation
heory provides some partial validation of the resolved-particle
lgorithms.

An algorithm is formulated to identify distinct clusters of
ontiguous particles of a given type (i.e., ion-conducting or
lectron-conducting). List-based data structures are established to
epresent contiguous particles or clusters. Beginning with a par-
icular particle, the algorithm keeps track of all particles that are
onnected directly or indirectly, thereby forming a contiguous clus-
er. The process is repeated for all particles. Finally all particles in
he domain are assigned to unique clusters. Once individual clus-
ers are identified, they are compared with the domain extents to
solate only those clusters that percolate throughout the domain
n either the x-, y-, or z-direction. Fig. 9 shows a typical cluster
panning the domain in the x-direction, thus forming a continuous
onduction pathway. The percolation probability for a given phase
olume fraction is calculated as the fraction of cases when one or
ore percolating clusters are found.
Fig. 10 shows the percolation probabilities as functions of phase

olume fraction. The resolved-particle models predict that the per-
olation probability increases more slowly as a function of phase
olume fraction than the percolation theory (Eq. (4)). Moreover,

he particle models predict higher percolation probability at low
hase volume fraction. In other words, the percolation threshold
ccurs at lower phase volume fraction. Nevertheless, the resolved
odels predict the rapid increase in percolation probability in the

olume-fraction range 0.3<  m < 0.5, indicating that the com-

ig. 10. Percolation probability as functions of solid-phase volume fraction,  m .
Fig. 11. Specific three-phase-boundary (TPB) lengths �V
TPB predicted by percolation

theory (i.e., Eq. (5)) compared to the resolved-particle model with DEM packing. The
percolated TPB lengths predicted by percolation theory use two alternatives (i.e., Eq.
(3) or (4)) to evaluate the percolation probabilities.

putational approach provides a reasonable representation of the
microstructure.

6.3. Three-phase-boundary length

Accurate prediction of the three-phase-boundary (TPB) length
is an important aspect of modeling charge-transfer chemistry in
SOFCs. The TPB length is evaluated by discretizing the circles that
are formed around the intersections between an ion-conducting
and electron-conducting particles, and then counting the number
of points on that boundary that are also shared by the adjoining
pore volume.

Fig. 11 shows TPB lengths (i.e., length per unit volume) pre-
dicted by percolation theory and the DEM packing algorithm. For
a three-phase boundary to be effective in charge transfer, both
ions and electrons must be available. That is, there must be per-
colation for both the ion- and electron-conducting phases to the
TPB. The upper panel in Fig. 11 is concerned with the entire TPB
lengths, independent of whether there is percolation or not. The
resolved model and the percolation theory (i.e., Eq. (5), assuming
Pel = Ped = 1) agree well, indicating that the geometric evaluation
of complete TPB length is consistent with percolation theory. The
lower panel of Fig. 11 is concerned with the percolated TPB length.
Two percolation-theory results are shown, using Eqs. (3) (Bouvard
and Lange [28]) and (4) (Suzuki and Oshima [30]) to evaluate the
percolation probabilities. Owing to lack of percolation for one of the
phases at high and low volume fractions, the percolated TPB shows
a much narrower distribution than the complete TPB length. The
DEM simulations agree reasonably well with the percolation the-
ory, although the distribution functions are wider and the peak TPB
length is somewhat lower.

Fig. 12 shows TPB lengths predicted by the random-packing
algorithm. Because the porosity is higher than in the DEM simula-

tions, the TPB lengths are generally smaller for the random packing.
The widths of the percolated TPB distributions are comparable for
the DEM and random-packing cases, but the predicted peak per-
colated TPB lengths are considerably lower than the percolation
theory for the random-packing simulations.
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ig. 12. Specific three-phase-boundary (TPB) lengths �TPB predicted by percolation
heory (i.e., Eq. (5)) compared to the resolved-particle model with random packing.
he percolated TPB lengths predicted by percolation theory use two alternatives
i.e., Eq. (3) or (4)) to evaluate the percolation probabilities.

.4. Effective conductivity
The resolved-particle models evaluate the effective conduc-
ivity directly. However, based upon percolation theory, one can
nticipate certain functional dependencies. Eq. (2) shows that

ig. 13. Conduction in two different percolating clusters. Colors indicate electric
otential, with red being high and blue being low. (For interpretation of the refer-
nces to color in this figure legend, the reader is referred to the web version of the
rticle.)
Fig. 14. Predicted effective conductivities �e
m as functions of solid-phase volume

fraction.

the effective conductivity depends upon the percolation prob-
ability and the tortuosity of the conduction pathways (i.e., the
Bruggeman factor, �). The probability of a percolating cluster of
a certain particle type increases with increasing particle volume
fraction.

The resolved-particle models are applied for a wide range of
phase volume fractions. Once a percolating cluster is identified, a
pure diffusion problem is solved for a generic scalar (e.g., electric
potential) with Dirichlet boundary conditions specified at each end
(Eq. (7)). Fig. 13 shows typical surface distributions of the scalar
in clusters for two different realizations (particle configurations).
To obtain statistically invariant results, the simulations are run for
twenty distinct realizations corresponding to each phase volume
fraction. The effective conductivity is defined as the ratio of the total
current through the conducting clusters for a given phase volume
fraction and the ideal current through the cubical volume (Eq. (10)).

Fig. 14 shows predicted effective conductivities as functions of
phase volume fraction for both DEM and random packing. The DEM
packing produces average porosity of �g = 0.32 and the random
packing produces average porosity of �g = 0.47. The figure also
shows comparisons with “standard” percolation theory (i.e., Eq.
(2)), but using different values of the Bruggeman factor. It is evident
that the commonly used value of � = 1.5 produces much higher

effective conductivities than those predicted by the fully resolved
models. A value of � ≈ 3.5 is consistent with the resolved-particle
simulations.

There is some evidence that the effective conductivity predicted
by conventional percolation theory (i.e., Bruggeman exponent of
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= 1.5) may be too high. Recent publications by Iwai et al. [12] and
ang et al. [36] are consistent with the present resolved-particle

ndings, showing significant deviations from percolation theory.
wai et al. propose that the effective conductivity may be evaluated
s [12]

e
m = �0

m
(1 − �g) m

�m
, (11)

here �m is a tortuosity factor. In this equation (1 − �g)/ m is the
raction of the entire volume occupied by phase m, whereas  m is
he volume fraction of the solid phases alone. Although the tortu-
sity factors reported by Iwai et al. are strongly anisotropic, even
he least tortuous paths produce effective conductivities that are

uch lower than those predicted by Eq. (2).
Wang et al. [36] formulated stochastic representations of PEMFC

omposite cathodes, assuming the microstructure to be repre-
ented by randomly generated cubes. They simulated transport
nd charge transfer using a fully resolved model similar to the
ne developed in the present paper. Comparing the fully resolved
esults to a one-dimensional macromodel suggested a Bruggeman
actor between 3.5 and 4.5. Thus, the Wang et al. results are also
onsistent with the present models.

The Bruggeman factor � is intended to account for two separate
henomena. One is the convoluted nature of conduction pathways
nd second is the possibility of isolated non-percolating clusters
hat do not contribute to conduction. Although the percolation
robability (i.e., the probability that at least one cluster will perco-

ate) is unity for m > 0.5, there may be islands of non-percolating
articles that are not taken into account by Eq. (2). The fully resolved
odels capture such islands and thus predict significantly lower

alues of effective conductivity than the percolation theory.

. Conclusions

A fully resolved-particle-based model of composite electrodes
as been developed and applied to predict average coordination
umbers, percolation probabilities, TPB lengths, and effective con-
uctivities of the packed-particle networks. Two different packing
lgorithms are used to synthesize microstructures from spheri-
al particles, with both algorithms producing similar results. Once
particle-based microstructure is generated, the entire particle
atrix is discretized with a tetrahedral mesh network. A charge-

onservation equation is solved to predict current through the
article network. These results are then used derive an effective
onductivity that is represented as a fraction of the intrinsic mate-
ial conductivity and microstructural characteristics of the particle
etwork.

The particle-packing algorithms are random, causing each
ealization of a particle packing to be different. Thus, multiple sim-
lations are needed to develop statistically valid results. The results
how that a few hundred particles with a few hundred realizations
re sufficient to reduce statistical variations to within acceptable
evels.

Coordination numbers, percolation probabilities, and TPB
engths can be evaluated based upon packing geometry alone.
hese results are found to be consistent with percolation theory,
erving as partial validation of the model. The effective conduc-
ivities that are derived from the fully resolved simulations are
specially valuable in larger scale models where the particle scale

annot be resolved. The effective conductivities are found to be
ignificantly smaller than those predicted by standard percolation
heory. However, using a Bruggeman factor of � = 3.5 instead of
he commonly used � = 1.5 brings the percolation prediction in
ine with the fully resolved results.

[
[
[
[

urces 195 (2010) 6671–6679 6679

The results in the present paper are concerned with uniform-
diameter spherical particles. One reason for this choice is to
compare results with percolation theory. However, the resolved-
particle modeling approach accommodates different particle
shapes and sizes, thus providing the capability to explore and eval-
uate innovative electrode architectures. Moreover, the model can
be extended easily to evaluate fluid-phase transport through the
pore volumes.
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